

Catalysis Today 120 (2007) 292-297

Thermal decomposition of Li₃AlH₆ with TiAl₃ catalyst

Jae-Hyeok Shim ^a, Gil-Jae Lee ^a, Byeong-Joo Lee ^b, Young-Joo Oh ^a, Young Whan Cho ^{a,*}

^a Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
^b Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang,
Gyungbuk 790-784, Republic of Korea

Available online 1 November 2006

Abstract

It has been found that the reaction products between $TiCl_3$ and Li_3AlH_6 by mechanical milling consist of LiCl and $TiAl_3$ together with TiH_2 . Thermodynamic calculation also predicts that $TiAl_3$ becomes dominant over TiH_2 with increasing temperature. Based on this, ultra-fine $TiAl_3$ powder having the primary particle size of about 100 nm has been mechanochemically synthesized from a mixture of $TiCl_3$, $AlCl_3$ and Mg. The addition of this $TiAl_3$ powder into Li_3AlH_6 clearly shows a good catalytic effect on the thermal decomposition of Li_3AlH_6 as expected. The use of fine $TiAl_3$ catalyst is certainly more favorable than $TiCl_3$ in terms of hydrogen storage capacity as it does not produce irreversible chloride byproduct in alanates.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Hydrogen storage materials; Alanate; Catalyst; Thermal decomposition; Mechanochemical synthesis

1. Introduction

The development of solid-state hydrogen storage at low and medium temperatures has been recognized as one of the key technologies for hydrogen fuel cell applications. Especially for vehicular applications, it is important to find new light-weight hydrogen storage materials that exhibit high reversible hydrogen capacity [1].

Alkali and alkali-earth metal alanates (aluminum hydrides) have received great attention as promising hydrogen storage materials owing to their inherent high theoretical hydrogen capacity, since Bogdanović and Schwickardi [2] first demonstrated in 1997 that reversible hydrogen storage could be achieved under moderate conditions (temperature and pressure) with accelerated kinetics in NaAlH₄ and Na₃AlH₆ by adding a small amount of Ti-containing catalysts such as TiCl₃ and Ti(OBu)₄ through wet chemistry. Following this finding, Jensen and his coworkers [3,4] reported improved kinetics by dispersing Ti-containing catalysts using a dry milling process. Currently, mechanical ball milling is being widely adopted to disperse a small amount of catalysts effectively into sodium

alanates in solid state [5,6]. In addition to sodium alanates, it has been shown that other alanates such as lithium alanates could also be catalyzed with Ti-containing materials [7]. In spite of the outstanding performance of Ti-containing catalysts, there is still no clear understanding on how they play a catalytic role in alanates. The first step toward the understanding of this catalytic mechanism would be to confirm what form of Ti exists in alanates. However, it is quite difficult to confirm unambiguously the state of Ti (e.g. metallic Ti, Ti compounds or Ti substitution in alanates) in alanates using most analytical techniques, because a very small amount of Ticontaining catalysts are usually added. On the whole, there exit two hypotheses on the Ti state in alanates. While the results of recent investigations [8–12] seem to support the hypothesis that Ti in situ forms TiAl₃ when introduced into alanates, there is another hypothesis that Ti substitutes for metal sites in alanates [13-15].

Assuming that Ti does transform into TiAl₃ in alanates, it is worthwhile to confirm its efficacy by adding TiAl₃, instead of TiCl₃, into alanates because TiCl₃ permanently reduces hydrogen storage capacity of alanates by reacting with part of alanates to form very stable salts such as NaCl and LiCl. In fact, Balema et al. [8] and Resan et al. [16] have recently attempted to confirm the catalytic activity of TiAl₃ by dispersing TiAl₃ powder prepared by milling the arc melted

^{*} Corresponding author. Tel.: +82 2 958 5465; fax: +82 2 958 5379. *E-mail address:* oze@kist.re.kr (Y.W. Cho).

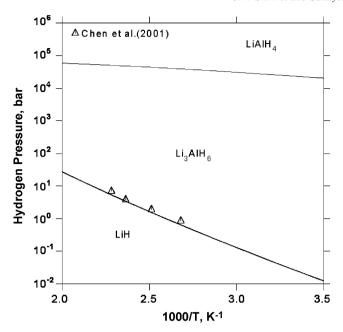


Fig. 1. Calculated stability diagram of LiH, Li₃AlH₆ and LiAlH₄ [18].

sample and commercial powder (<150 μm), respectively, into LiAlH₄. They showed that the addition of TiAl₃ indeed decreased the dehydrogenation starting temperature of LiAlH₄ by about 10 °C, although the catalytic effect may not be significant. It is, therefore, desirable to produce as fine TiAl₃ powder as possible as the catalytic efficacy will be naturally enhanced with decreasing particle size of catalyst. Mechanical milling is one of the simple and cost-effective methods for producing TiAl₃ powders. However, it might be difficult to obtain fine TiAl₃ particles using conventional milling techniques because TiAl₃ is relatively ductile and thus they easily agglomerate during milling [17].

The purpose of this study is to elucidate if TiCl₃ indeed forms TiAl₃ in Li₃AlH₆ using both experimental work and theoretical calculations and to investigate the catalytic effect of TiAl₃ on thermal decomposition (dehydrogenation) of Li₃AlH₆ using ultrafine TiAl₃ powder prepared by mechanochemical reaction between TiCl₃, AlCl₃ and Mg powders. The main reason to adopt Li₃AlH₆ (5.6 wt.% H₂) instead of LiAlH₄ (7.9 wt.% H₂) is that the hydrogen pressure required to rehydrogenate LiAlH₄ is estimated to be an order of 10⁴ bar, according to our recent thermodynamic calculation shown in Fig. 1 [18].

2. Experimental procedure

LiAlH₄ (95%), LiH (95%), TiCl₃ (99%) and AlCl₃ (99.9%) powders were purchased from Sigma–Aldrich, and Mg (99.8%) powder from Alfa–Aesar. In order to synthesize Li₃AlH₆ mechanochemically, a 5 g mixture of LiAlH₄ and LiH with a molar ratio of 1:2 was charged together with ten 15 mm and thirty 10 mm diameter zirconia balls into a 250 ml silicon nitride bowl under an argon atmosphere in a glove box. The ball-to-powder weight ratio was approximately 37:1. The mixture was milled in a Fritsch P4 planetary mill at 350 rpm for 4 h 30 min.

A 1 g mixture of mechanochemically prepared Li₃AlH₆ and TiCl₃ was charged together with seventeen 7.9 mm diameter Cr-steel balls into a tool steel vial under an argon atmosphere. The ball-to-powder weight ratio was approximately 35:1. The mixture was milled in a SPEX-8000 mill for 2 h. Some of the milled powders were rinsed in distilled water and filtered to remove chloride formed during milling. The mole ratio between Li₃AlH₆ and TiCl₃ was changed from 1:1 to 6:1.

In order to synthesize fine TiAl₃ mechanochemically, a mixture of TiCl₃, AlCl₃ and Mg powders with a molar ratio of 1:3:6 was milled for 4 h using the SPEX-8000 mill at the same milling condition as described before. The milled powder was rinsed in distilled water and filtered to remove MgCl₂ byproduct formed during milling.

The product powders were characterized by X-ray diffraction (XRD) using Bruker D8 Advance with Cu K α radiation and scanning electron microscopy (SEM) using FEI XL-30 FEG.

In order to confirm the catalytic effect of fine TiAl₃ on the thermal decomposition of Li₃AlH₆, 5 mol% TiAl₃ was dispersed into Li₃AlH₆ by milling the mixture in the SPEX-8000 mill for 30 min. The same amount of TiCl₃ was also dispersed into Li₃AlH₆ for comparison. The thermal decomposition behavior of Li₃AlH₆ with and without catalyst was analyzed by differential scanning calorimetry (DSC) using NETSCH DSC204 and thermogravimetry (TG) using NETSCH TG209. The heating rate was 2 °C/min and the flow rate of 99.9999% argon gas was 50 ml/min for both DSC and TG measurements. The kinetics of the thermal decomposition reaction was volumetrically measured by a Sievert type apparatus.

3. Thermodynamic calculation

Thermodynamic calculation of the Li–Al–H–Ti–Cl system was performed based on the Gibbs-energy minimization criterion [19] to understand what the equilibrium phases are in the Li₃AlH₆ and TiCl₃ mixtures. The phases included in this calculation were Li₃AlH₆, LiAlH₄, LiH, TiCl₃, LiCl, Ti, Al, TiAl, TiAl₃, Ti₃Al, TiAl₂, Ti₅Al₁₁, TiH₂ and H₂. The Gibbs energy data for Li₃AlH₆ and LiAlH₄ were taken from Ref. [18]. The data for the Ti–Al intermetallic phases and all the other phases were from the SGTE solution and substance databases, respectively, which are incorporated into Thermo-Calc [20].

4. Results and discussion

The XRD pattern of the mixture of LiAlH₄ and LiH milled for 4 h 30 min is presented in Fig. 2. The peak positions are in good agreement with those of Li₃AlH₆ obtained by Zaluski et al. [21] and Balema et al. [22]. It is, therefore, confirmed that Li₃AlH₆ forms during milling according to the following reaction:

$$LiAlH_4 + 2LiH \rightarrow Li_3AlH_6 \tag{1}$$

The XRD patterns of reaction products between LiAlH₆ and TiCl₃ milled for 2 h are shown in Fig. 3. For the 6:1 mixture,

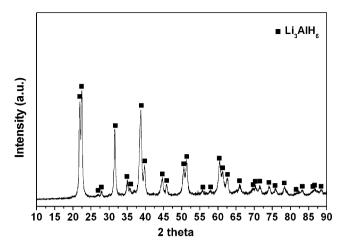


Fig. 2. XRD pattern of Li₃AlH₆ prepared by mechanochemical reaction.

LiCl and TiAl₃ with L1₂ structure form and very small peaks of Li₃AlH₆ are also observed in the pattern. In the cases of the 2:1 and 1:1 mixtures, Li₃AlH₆ disappears, while LiCl and L1₂—TiAl₃ are still the main products. It is found, however, that there exists another reaction product in the 1:1 mixture (Fig. 3c). This phase could be indexed as δ -TiH₂ with cubic structure, although the strongest peak of it overlaps those of LiCl and TiAl₃. The reaction product of the 1:1 mixture was rinsed in distilled water after milling in order to make the phase identification easy by removing LiCl. The XRD pattern of the rinsed reaction products is given in Fig. 4. The presence of δ -TiH₂ is clearly shown

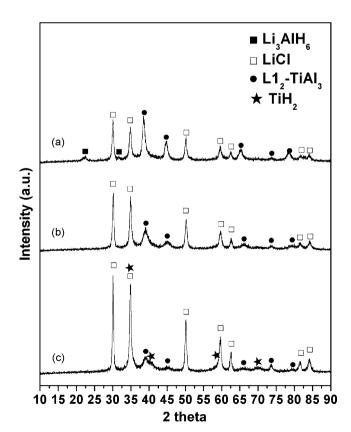


Fig. 3. XRD patterns of reaction products between Li_3AlH_6 and $TiCl_3$: (a) 6:1, (b) 2:1, and (c) 1:1.

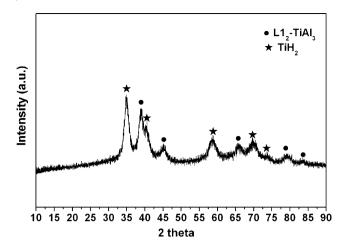


Fig. 4. XRD pattern of reaction products between Li₃AlH₆ and TiCl₃ (1:1 mixture) after rinsing in distilled water.

together with L1₂–TiAl₃. From these mechanochemical reactions with various mixing ratios between Li₃AlH₆ and TiCl₃, it is concluded that TiCl₃ transforms mainly into L1₂–TiAl₃ when it is introduced in Li₃AlH₆ as catalyst and starts to produce δ -TiH₂ at high concentrations of TiCl₃. The formation of L1₂–TiAl₃ was also observed when a 3:1 mixture of NaAlH₄ and TiCl₃ was ball milled [9].

The formation of L1₂-TiAl₃ in alanates with TiCl₃ catalyst during milling is quite interesting, because the equilibrium phase at 75 at.% Al in the Ti-Al phase diagram is not cubic L1₂- but tetragonal D0₂₂-TiAl₃. Although D0₂₂-TiAl₃ is energetically more stable than L12 by about 0.05 eV/atom [23], L1₂-TiAl₃ rather than D0₂₂ is frequently observed when the process conditions are far from equilibrium such as mechanical milling and thin film deposition [24]. The formation of metastable L1₂-TiAl₃ might be attributed to its lower kinetic nucleation barrier compared to equilibrium D0₂₂-TiAl₃, because the Ll₂ structure shows a lower degree of order than D0₂₂ [24]. Moreover, it has been known for a long time that the third elements such as Cu, Cr, Fe, Ni and Mn stabilize the L₁₂ structure [25]. Impurity elements such as Fe, which might have been introduced by erosion from balls and vials during milling, probably helped stabilize L1₂-TiAl₃.

Table 1 summarizes the result of the thermodynamic calculation for the reaction products between Li₃AlH₆ and TiCl₃ at 25 $^{\circ}$ C. In this calculation, D0₂₂-TiAl₃ instead of L1₂-TiAl₃ was taken into account because thermodynamic data of L1₂-TiAl₃ is not available. Thermodynamics tells that

Table 1 Calculated equilibrium phase fractions at 25 °C

1	
Mixing ratios of Li ₃ AlH ₆ and TiCl ₃	
2:1	1:1
H ₂ 19.4	H ₂ 33.3
LiCl 25.0	LiCl 42.9
TiAl ₃ 5.6	TiAl ₃ 9.5
TiH ₂ 8.3	TiH ₂ 14.3
Li ₃ AlH ₆ 41.7	Li ₃ AlH ₆ 0.0
	2:1 H ₂ 19.4 LiCl 25.0 TiAl ₃ 5.6 TiH ₂ 8.3

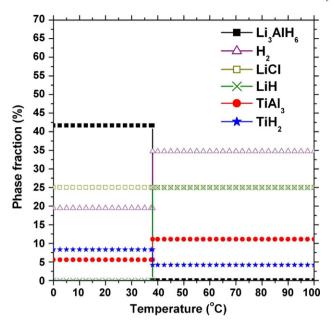


Fig. 5. Calculated equilibrium phase fractions in 2:1 mixture of Li $_3$ AlH $_6$ and TiCl $_3$ between 0 and 100 $^\circ$ C.

LiCl and TiAl₃ are the equilibrium reaction products, which is in good agreement with the results of the present milling experiments. However, TiH₂ always appears along with TiAl₃, which shows only partial agreement with the experiment. TiH₂ is observed only in the 1:1 mixture. In addition, Li₃AlH₆ is not observed in the experiment although it remains as a stable phase in the 2:1 mixture according to the calculation. The calculated mole fractions of the equilibrium phases for the 2:1 mixture between 0 and 100 °C are shown in Fig. 5. Interestingly, the mole fraction of TiAl₃ increases and that of TiH2 decreases with increasing temperature. TiAl3 becomes dominant over TiH2 and Li3AlH6 disappears as the mole fraction of TiAl₃ increases above about 40 °C. This is probably because TiH2 reacts with Li3AlH6 to form TiAl3. The temperature inside the vial, surely, increases by the collisions between balls and vial walls during milling, although it is difficult to measure or predict the exact temperature increase. The increase in temperature during milling might explain why TiH₂ and Li₃AlH₆ are not clearly observed in the 6:1 and 2:1 mixtures. It is shown in Fig. 5 that LiH forms by the decomposition of Li₃AlH₆. By chance, the peaks of LiH are almost coincident with L12-TiAl3 in the XRD pattern. The overlap of the peaks seems to make the peaks of TiAl₃ relatively high in the XRD patterns of the 6:1 and 2:1 mixtures compared to those of the 1:1 mixture, as shown in Fig. 3a and b.

The XRD patterns of the mixture of TiCl₃, AlCl₃ and Mg milled for 4 h and the sample rinsed in distilled water after milling are presented in Fig. 6. L1₂–TiAl₃ and MgCl₂ are identified as the main reaction products after milling (Fig. 6a) and the starting materials such as TiCl₃, AlCl₃ and Mg are not observed. This indicates that the following reaction is completed after 4 h of milling:

$$TiCl_3 + 3AlCl_3 + 6Mg \rightarrow TiAl_3 + 6MgCl_2$$
 (2)

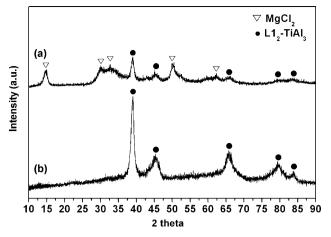


Fig. 6. XRD patterns of the TiCl₃, AlCl₃ and Mg mixture (b) milled for 4 h and (a) rinsed in distilled water after the milling.

As shown in Fig. 6b, relatively pure TiAl₃ is easily obtained as MgCl₂ formed during milling is completely dissolved in distilled water and washed away during filtering.

Fig. 7 shows an SEM micrograph of the TiAl $_3$ powder. The primary particle size is around 100 nm and it exhibits an irregular shape, although most particles seem to be agglomerated. Compared to coarse particle size (>10 μ m) of TiAl $_3$ obtained from milling of a mixture of Ti and Al powders, they are extremely fine. It can be concluded that this chloride-based mechanochemcal reaction is very effective in reducing the size of product particle, as Tsuzuki and McCormick [26] showed for various reaction systems.

The XRD patterns of Li₃AlH₆ catalyzed with TiAl₃ and TiCl₃ are presented in Fig. 8. Although most of TiAl₃ peaks except for (2 2 0) overlap with those of Li₃AlH₆, it seems that TiAl₃ is stable in Li₃AlH₆ without any reaction or transformation (Fig. 8a). In the case of Li₃AlH₆ catalyzed with TiCl₃, the formation of LiCl is clearly shown in the XRD pattern (Fig. 8b), although the existence of TiAl₃ is not so evident with a small amount of TiCl₃. This is presumably because the crystallite size of TiAl₃ in situ formed in Li₃AlH₆ is too small to identify with XRD. In fact, Graetz et al. [10] reported that the formation of nanocrystalline TiAl₃ in NaAlH₄ catalyzed with 2 and 4 mol% TiCl₃ was observed by high-energy X-ray absorption.

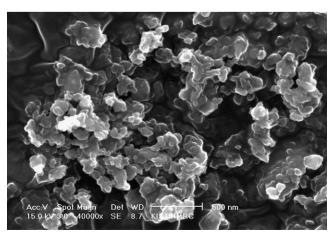


Fig. 7. SEM micrograph of the synthesized TiAl₃ powder.

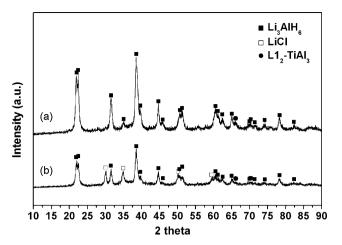


Fig. 8. XRD patterns of Li₃AlH₆ catalyzed with (a) TiAl₃ and (b) TiCl₃.

Fig. 9 shows DSC curves of Li₃AlH₆ with and without catalysts. All the samples exhibit a large endothermic peak according to the following thermal decomposition reaction:

$$Li_3AlH_6 \rightarrow 3LiH + Al + \frac{3}{2}H_2 \tag{3}$$

Without catalysts, Li₃AlH₆ starts to decompose releasing H₂ gas (dehydrogenation) at about 190 °C and the peak temperature is about 210 °C. On the other hand, the thermal decomposition of Li₃AlH₆ containing TiAl₃ starts at about 160 °C and exhibits the peak at about 180 °C. This decrease in thermal decomposition temperature is quite large compared to those of Balema et al. [8] and Resan et al. [16] who had also used TiAl₃. This might be attributed to the ultrafine particle size of TiAl₃ prepared in the present work. Nevertheless, the catalytic efficacy of ultrafine TiAl₃ is not as good as that of TiCl₃, which decreases the thermal decomposition starting temperature down to about 130 °C. It is not fully understood yet why there exists a difference in catalytic activity between externally added and in situ formed TiAl3 particles. This is presumably because the in situ formation and dispersion of TiAl₃ by the reaction between TiCl₃ and Li₃AlH₆ is more

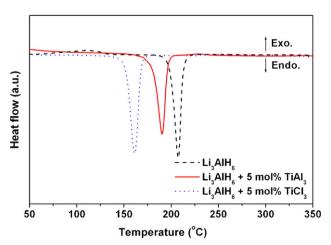


Fig. 9. DSC curves of Li₃AlH₆ with and without catalysts.

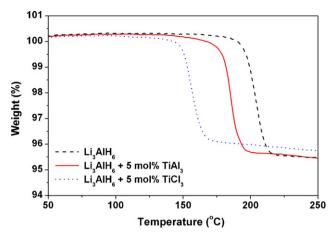


Fig. 10. TG curves of Li₃AlH₆ with and without catalysts.

advantageous than the direct dispersion of TiAl₃ in aspects of the uniform dispersion and fine particle size of the catalyst. Oxide layers inevitably exist on the surface of the externally added TiAl₃ particles, which had formed during the rinsing and filtering processes, might have decreased the catalytic activity.

The TG curves show the amount of released hydrogen as well as the thermal decomposition temperature (Fig. 10). Li₃AlH₆ without catalysts releases about 4.8 wt.% H₂, which is lower than the theoretical hydrogen storage capacity of Li₃AlH₆ (5.6 wt.%) due to the low purity of raw materials and the partial decomposition of Li₃AlH₆ during mechanochemical preparation. It is noted that Li₃AlH₆ catalyzed with TiAl₃ releases larger amount of hydrogen (4.5 wt.%) than Li₃AlH₆ with TiCl₃ (4.0 wt.%) as expected. This is evident because TiCl₃ decomposes part of Li₃AlH₆ during milling for dispersion and thus decreases the hydrogen storage capacity of Li₃AlH₆. Therefore, it will be favorable to add TiAl₃ instead of TiCl₃ into alanates in order to minimize the loss in hydrogen storage capacity of Li₃AlH₆.

The thermal decomposition kinetics of Li₃AlH₆ with and without catalysts at 150 °C is shown in Fig. 11. Without catalysts, Li₃AlH₆ shows slow thermal decomposition kinetics,

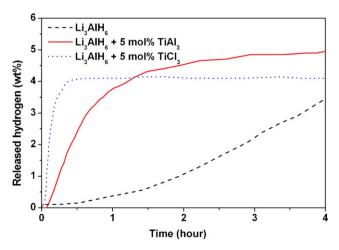


Fig. 11. Amount of hydrogen released from Li_3AlH_6 during thermal decomposition at 150 °C as a function of time.

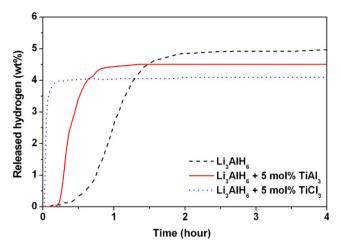


Fig. 12. Amount of hydrogen released from Li $_3$ AlH $_6$ during thermal decomposition as a function of time at 170 $^{\circ}$ C.

releasing at most about 3.4 wt.% hydrogen in 4 h. It is found that the addition of TiAl₃ significantly improves the thermal decomposition kinetics. The amount of hydrogen released from Li₃AlH₆ catalyzed with TiAl₃ exceeds that with TiCl₃ at 90 min and is saturated to about 4.5 wt.% in 3 h. Li₃AlH₆ catalyzed with TiCl₃ finally releases only about 4.0 wt.% hydrogen, although it shows the fastest kinetics. The TiAl₃ catalyst exhibits the improved kinetics, also at 170 °C, compared to Li₃AlH₆ without catalysts, releasing about 4.5 wt.% hydrogen in an hour (Fig. 12).

Despite the importance of Ti-containing catalysts in alanates, the catalytic mechanism in the dehydrogenation and re-hydrogenation reactions is still not fully understood, although there have been some attempts to explain the mechanisms [12,27]. In order to enhance the performance of known catalysts and to develop new catalysts, the exact mechanism should be further elucidated.

5. Conclusions

The present investigation shows that the reaction between $TiCl_3$ and Li_3AlH_6 by mechanical milling produces LiCl and $L1_2$ – $TiAl_3$. δ - TiH_2 is also observed when the $TiCl_3$ concentration is high in the starting mixture. The formation of both $TiAl_3$ and TiH_2 is in good agreement with the result of thermodynamic calculation, though $TiAl_3$ becomes more favorable phase than TiH_2 as temperature increases. The addition of ultrafine $TiAl_3$ powder, synthesized by mechanochemical reaction between $TiAl_3$, $AlCl_3$ and Mg, into Li_3AlH_6 decreases the thermal decomposition temperature by about 30 K and significantly improved the decomposition reaction kinetics,

compared to Li₃AlH₆ without any catalyst. Although this ultrafine TiAl₃ catalyst is still not as good as TiCl₃, particularly in terms of reaction kinetics, it is demonstrated in the present study that the use of TiAl₃ catalyst is more desirable than TiCl₃ in terms of hydrogen storage capacity.

Acknowledgements

This work has been supported by the Hydrogen Energy R&D Center, one of the 21st Century Frontier R&D Programs, funded by the Ministry of Science and Technology of Korea.

References

- [1] L. Schlapbach, A. Züttel, Nature 414 (2001) 353.
- [2] B. Bogdanović, M. Schwickardi, J. Alloys Compd. 253/254 (1997) 1.
- [3] C.M. Jensen, R. Zidan, N. Mariels, A. Hee, C. Hagen, Int. J. Hydrogen Energy 24 (1999) 461.
- [4] R.A. Zidan, S. Takara, A.G. Hee, C.M. Jensen, J. Alloys Compd. 285 (1999) 119.
- [5] K.J. Gross, G.J. Thomas, C.M. Jensen, J. Alloys Compd. 330–332 (2002) 683.
- [6] G. Sandrock, K. Gross, G. Thomas, J. Alloys Compd. 339 (2002) 299.
- [7] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita, T. Sakai, J. Phys. Chem. B 105 (2001) 11214.
- [8] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski, V.K. Pecharsky, J. Alloys Compd. 329 (2001) 108.
- [9] E.H. Majzoub, K.J. Gross, J. Alloys Compd. 356/357 (2003) 363.
- [10] J. Graetz, J.J. Reilly, J. Johnson, A.Yu. Ignatov, T.A. Tyson, Appl. Phys. Lett. 85 (2004) 500.
- [11] A.G. Haiduc, H.A. Stil, M.A. Schwarz, P. Paulus, J.J.C. Greerlings, J. Alloys Compd. 393 (2005) 252.
- [12] V.P. Balema, L. Balema, Phys. Chem. Chem. Phys. 7 (2005) 1310.
- [13] D. Sun, T. Kiyobayashi, H.T. Takeshita, N. Kuriyama, C.M. Jensen, J. Alloys Compd. 337 (2002) L8.
- [14] J. Íñiguez, T. Yildirim, T.J. Udovic, M. Sulic, C.M. Jensen, Phys. Rev. B 70 (2004) 060101(R).
- [15] O.M. Løvvik, S.M. Opalka, Phys. Rev. B 71 (2005) 054103.
- [16] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (2005) 1417.
- [17] K.I. Moon, K.S. Lee, J. Alloys Compd. 264 (1998) 258.
- [18] J.-W. Jang, J.-H. Shim, Y.W. Cho, B.-J. Lee, J Alloys Compd. 420 (2006) 286
- [19] N. Saunders, A.P. Miodownik, CALPHAD: A Comprehensive Guide, Elsevier Science, Oxford, UK, 1998.
- [20] http://www.thermocalc.se.
- [21] L. Zaluski, A. Zaluska, J.O. Ström-Olsen, J. Alloys Compd. 290 (1999)
- [22] V.P. Balema, V.K. Pecharsky, K.W. Dennis, J. Alloys Compd. 313 (2000) 69.
- [23] T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J. Xu, Phys. Rev. B 41 (1990) 12462.
- [24] T. Klassen, M. Oehring, R. Bormann, J. Mater. Res. 9 (1994) 47.
- [25] S.S. Nayak, B.S. Murty, Mater. Sci. Eng. A367 (2004) 218.
- [26] T. Tsuzuki, P.G. McCormick, J. Mater. Sci. 39 (2004) 5143.
- [27] http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/annual04/iiic2_wang.pdf.